Non-denseness of factorable matrix functions
نویسندگان
چکیده
منابع مشابه
Denseness for norm attaining operator-valued functions
In this note we offer a short, constructive proof for Hilbert spaces of Lindenstrauss’ famous result on the denseness of norm attaining operators. Specifically, we show given any A ∈ L(H) there is a sequence of rank-1 operators Kn such that A+Kn is norm attaining for each n and Kn converges in norm to zero. We then apply our construction to establish denseness results for norm attaining operato...
متن کاملDenseness of Numerical Radius Attaining Holomorphic Functions
LetX be a complex Banach space andX∗ its dual space. We consider the topological subspace Π X { x, x∗ : x∗ x 1 ‖x‖ ‖x∗‖} of the product space BX ×BX∗ , equipped with norm and weak-∗ topology on the unit ball BX ofX and its dual unit ball BX∗ , respectively. It is easy to see that Π X is a closed subspace of BX × BX∗ . For two complex Banach spaces X and Y , denote by Cb BX : Y the Banach space ...
متن کاملStructure in Optimization: Factorable Programming and Functions
The purpose of this paper is to explore structures of functions in optimization. We will assume that the functions are composed of user-defined functions and are given as computer programs. Factorable functions and factorable programming problems were developed from 1967 through 1990 and are early examples of structure in nonlinear optimization. We explore the relationship between source code t...
متن کاملStrong Peak Points and Denseness of Strong Peak Functions
Let Cb(K) be the set of all bounded continuous (real or complex) functions on a complete metric space K and A a closed subspace of Cb(K). Using the variational method, it is shown that the set of all strong peak functions in A is dense if and only if the set of all strong peak points is a norming subset of A. As a corollary we show that if X is a locally uniformly convex, complex Banach space, ...
متن کاملGlobal optimization of bounded factorable functions with discontinuities
A deterministic global optimization method is developed for a class of discontinuous functions. McCormick’s method to obtain relaxations of nonconvex functions is extended to discontinuous factorable functions by representing a discontinuity with a step function. The properties of the relaxations are analyzed in detail; in particular, convergence of the relaxations to the function is establishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2011
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2011.05.024